11. Container With Most Water
- Hardness: \(\color{orange}\textsf{Medium}\)
- Ralated Topics:
Array
、Two Pointer
、Greedy
一、題目
You are given an integer array height
of length n
. There are n
vertical lines drawn such that the two endpoints of the ith
line are (i, 0)
and (i, height[i])
.
Find two lines that together with the x-axis form a container, such that the container contains the most water.
Return the maximum amount of water a container can store.
Notive that you may not slant the container.
Example 1:
- Input: height = [1,8,6,2,5,4,8,3,7]
- Output: 49
- Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example 2:
- Input: height = [1,1]
- Output: 1
Constraints:
n == height.length
2 <= n <= 10^5
0 <= height[i] <= 10^4
二、分析
- 此題用
Greedy
與Two Pointer
的方向來思考。- 兩個垂直線相距愈遠且線高愈高,則兩線間可裝的水愈多。
- 兩垂直線間可裝的水,受限於線高較低者。
- 任兩線間(相距變小),有任一解大於當下解,只有在有線高高於兩線線高較低者。
- 故我們每次移動線高較低的那邊。
- 兩線間可裝的水為:
int calArea(vector<int>& height, int left, int right) { return min(height[left], height[right]) * (right - left); }
三、解題
1. Two Pointer
- Time complexity: \(O(n)\)
- Space complexity: \(O(n)\)
int calArea(vector<int>& height, int left, int right) {
return min(height[left], height[right]) * (right - left);
}
int maxArea(vector<int>& height) {
int left = 0, right = height.size()-1;
int res = 0;
do {
res = max(res, calArea(height, left, right));
if (height[left] < height[right])
left++;
else
right--;
} while (left < right);
return res;
}