1235. Maximum Profit in Job Scheduling
- Hardness: \(\color{red}\textsf{Hard}\)
- Ralated Topics:
Array
、Binary Search
、Dynamic Programming
、Sorting
一、題目
We have n
jobs, where every job is scheduled to be done from startTime[i]
to endTime[i]
, obtaining a profit of profit[i]
.
You’re given the startTime
, endTime
and profit
arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.
If you choose a job that ends at time X
you will be able to start another job that starts at time X
.
Example 1:
- Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70]
- Output: 120
- Explanation: The subset chosen is the first and fourth job.
Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70.
Example 2:
- Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60]
- Output: 150
- Explanation: The subset chosen is the first, fourth and fifth job.
Profit obtained 150 = 20 + 70 + 60.
Example 3:
- Input: The subset chosen is the first, fourth and fifth job. Profit obtained 150 = 20 + 70 + 60.
- Output: 6
Constraints:
1 <= startTime.length == endTime.length == profit.length <= 5 * 10^4
1 <= startTime[i] < endTime[i] <= 10^9
1 <= profit[i] <= 10^4
二、分析
- 在思考這一題,首先要先有
coin change
的思維,也就是動態規劃:- 我們將
dp[n]
定義為在時間n
時的最大利益。 - 所以當時間點
i
的最大利益會等於max(dp[i-1], dp[i - time_cost] + profit
- 以範例 1 為例即:
dp[0] = 0
dp[1] = 0
dp[2] = 0
dp[3] = 50 = max(dp[1]+50, dp[2])
dp[4] = 50 = dp[3]
dp[5] = 90 = max(dp[3]+40, dp[4])
- …
- 其中我們可以發現,有可能發生改變的時間點都是在每一個工作的
endTime
,也就是說我們只要針對每個endTime
去記錄即可,其中我們可將dp[i - time_cost]
改為搜尋小於startTime
的最大值,即:dp[0] = 0
dp[3] = 50 = max(dp[0], dp[3])
dp[4] = 10 = max(dp[0]+10, dp[4])
我們只記錄當下最大利益,故不記錄dp[5] = 90 = max(dp[3]+40, dp[5])
dp[6] = 120 = max(dp[3]+70, dp[6]
- 我們將
- 我們可以使用
map
這個資料結構,將所有trigger point
依endTime
排序後,逐步更新。- 其中注意
upper_bound(x)
這個函式,會找大於x
的位子,而且我們要找的是比小於等於當前startTime
的資料,故我們找的是upper_bound(x)-1
。 - 由於時間
t = 0
時不會有收益,我們可以加入{0,0}
,這樣可以省去解決 iterator out of range(it 指向 -1) 的情形。
- 其中注意
三、解題
1. DP + Binary Search
- Time complexity: \(O(n\log n)\)
- Space complexity: \(O(n)\)
int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
map<int,int> dp;
vector<vector<int>> job;
int n = startTime.size();
for (int i = 0; i < n; i++) {
job.push_back({endTime[i], startTime[i], profit[i]});
}
sort(job.begin(), job.end()); // sort by endTime
dp.insert({0,0}); // 省去處理 out of range
int res = 0;
for (int i = 0; i < n; i++) {
auto it = dp.upper_bound(job[i][1]); // > startTime
it--; // <= startTime
int last = it->second;
int val = last + job[i][2]; // 由當前最大收益往上累積
int pos = job[i][0];
if (val < res) continue; // 若當前最大收益比歷史最大收益還小,則跳過不記錄
dp[pos] = max(dp[pos], val); // 更新當前最大收益
res = max(dp[pos], res); // 更新歷史最大收益
}
return res;
}