線性迴歸建模#
載入資料#
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mlp
url = "sample.csv"
data = pd.read_csv(url)
x = data["x-axis"]
y = data["y-axis"]
def plot(x, y, w, b):
line = w * x + b
plt.plot(x, line, color="red", label="prediction")
plt.scatter(x, y, color="blue", label="data", marker="x")
plt.title("Title")
plt.xlabel("x Axis")
plt.ylabel("y Axis")
plt.xlim([0,12])
plt.ylim([20,140])
plt.show()
plot(x, y, 10, 20)
定義 cost function#
def cost_function(x, y, w, b):
y2 = w * x + b
cost = (y - y2) ** 2
return cost.mean()
cost_function(x, y, 10, 20)
w_arr = []
costs = []
for w in range(-100, 101):
w2 = 10 + w/100
cost = cost_function(x, y, w2, 20)
w_arr.append(w2)
costs.append(cost)
import matplotlib.pyplot as plt
plt.title("cost function - when b = 20)
plt.xlabel("w")
plt.ylabel("cost function")
plt.plot(w_arr, costs)
plt.show()
利用 numpy 計算矩陣#
import numpy as np
ws = np.arange(-100, 101)
bs = np.arange(-100, 101)
costs = np.zeros((201, 201))
i = 0
for w in ws:
j = 0
for b in bs:
cost = cost_function(x, y, w, b)
costs[i,j] = cost
j = j+1
i = i+1
print(costs)
畫 3d 圖#
ax = plt.axes(projection="3d")
ax.xaxis.set_pane_color((1,1,1))
ax.yaxis.set_pane_color((1,1,1))
ax.zaxis.set_pane_color((1,1,1))
plt.figure(figsize=(7,7))
ax.view_init(30, -110)
b_grid, w_grid = np.meshgrid(bs, ws)
ax.plot_surface(w_grid, b_grid, costs, cmap="Spectral_r", alpha=0.7)
ax.plot_wireframe(w_grid, b_grid, costs, alpha=0.1)
ax.set_title("loss function")
ax.set_xlabel("w")
ax.set_ylabel("b")
ax.set_zlabel("loss")
w_index, b_index = np.where(costs == np.min(costs))
ax.scatter(ws[w_index], bs[b_index], costs[w_index, b_index], color="red", s=40)
plt.show()
計算梯度#
- \(\text{cost} = (\text{y}_\text{pred}-\text{y})^2\\
\text{cost} = (\text{y}-(\text{w}\times\text{x}+\text{b}))^2\\
\text{m} _\text{w} = -2\times\text{x}(\text{y-wx-b})\\
\text{m} _\text{b} = -2\times(\text{y-wx-b})\\
\)
def compute_gradient(x, y, w, b):
w_gradient = 2*x*(w*x+b-y).mean()
b_gradient = 2*(w*x+b-y).mean()
return w_gradient, b_gradient
利用梯度下降計算 cost 最小值#
- \(\text{w}_2=\text{w}-\text{m} _\text{w} \times \text{learning\_rate}\)
- \(\text{b}_2=\text{b}-\text{m} _\text{b} \times \text{learning\_rate}\)
learning_rate = 0.001
for i in range(10):
w_gradient, b_gradient = compute_gradient(x, y, w, b)
w = w - w_gradient * learning_rate
b = b - b_gradient * learning_rate
cost = cost_function(x, y, w, b)
print(f"Iteration {i} : Cost {cost}, w: {w}, b: {b}")
gradient_descent 函式#
def gradient_descent(x, y, w_init, b_init, learning_rate, cost_function, gradient_function, run_iteration):
c_hist = []
w_hist = []
b_hist = []
w = w_init
b = b_init
for i in range(run_iteration):
w_gradient, b_gradient = gradient_function(x, y, w, b)
w = w - w_gradient * learning_rate
b = b - b_gradient * learning_rate
cost = cost_function(x, y, w, b)
w_hist.append(w)
b_hist.append(b)
c_hist.append(cost)
return w, b, w_hist, b_hist, c_hist
多特徵的預測#
from sklearn.model_selection import train_test_split
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
x_real = np.array([[5.3, 2, 1, 0], [7,2, 0, 0, 1]])
x_real = scaler.transfrom(x_real)
y_real = (w_final*x_real).sum(axis=1) + b_final
y_real
「特徵縮放」加速 gradient descent#
- w1x1+w2x2+w3x3+w4x4+b
- 因分布範圍不同,調整參數,最好令每一個乘積都相當
- 相當於是標準化:\(\frac{\text{x-平均值}}{標準差}\)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
邏輯迴歸 Logistic Regression#
Sigmoid Function#
- 當模性呈現 0-1 關係(邏輯迴歸)時可用
- \(\text{Sigmoid Function}=\frac{1}{1+e^{-z}}\)
def sigmoid(z):
return 1/(1+np.exp(-z))
w = np.array([1,2,3,4])
b = 1
z = (w*x_train).sum(axis=1) + b
sigmoid(z)