Oh! You closed up the window, so you cannot see raining

[ML] 機器學習與統計學

Introduction to ML 統計學與機器學習差在哪裡? 同: 將資料(data)轉為資訊(info) 異: 有無強烈的人為事先假設 統計學 統計學是在資料分析的基礎上,研究如何測定、收集、整理、歸納和分析反映資料,以便給出正確訊息的科學。 機器學習 機器學習演算法是一類從資料中自動分析獲得規律,並利用規律對未知資料進行預測的演算法。 \(\begin{array}{lll} \text{Item} & \text{Statistics} & \text{Machine Learning}\\\hline \text{特性} & \text{伴隨事前假設,依賴明確規則,以模型定義資料關聯性,重視模型解釋性} & \text{幾乎無視前假設,不依賴明確規則,相信經驗}\\ & \text{事前假設(人)}\rightarrow\text{模型估計(機器)} & \text{特徵萃取(機器)}\rightarrow\text{網路建構(機器)} \\\hline \text{優點} & \text{模型可解釋} & \text{不須事先假設或了解資料關聯性}\\ & \text{推論有強烈理論根據} & \text{可抓取資料的所有(幾乎)複雜特徵}\\ & \text{符合事前假設前提下,可做更多的推論}\\ & \text{符合事前假設前提下,不需大量資料} \\\hline \text{缺點} & \text{所有推論接基於事前假設,常難以驗證假設的正確性} & \text{模型難以解釋(黑盒子)}\\ & \text{難以抓取資料中過於複雜的特徵} & \text{推論無強烈理論根據} \\\hline \text{專家} & \text{統計背景} & \text{資訊背景及統計背景} \\\hline \end{array}\) 結論 統計模型的重點是有合理的事前假設 在有合理假設之情況下,統計模型能發揮效力(即使資料量少) 機器學習的重點是大量有代表性的資料 在有大量有效資料之情況下,機器學習能發揮效力(即使人類對資料間的關聯之了解並不多) 何時使用統計方法? 何時使用機器學習? 資料關聯性清楚,容易給予合適的模型假設時,建議使用統計模型 資料無明確規則(如影像及語音辨識),且資料量夠多時,建議使用機器學習方法(可以佐以人為提示) 統計與機器學習類似的專有名詞 \(\begin{array}{ll} \text{Statistics} & \text{Machine Learning} \text{response, dependent variable} & \text{label} \\\hline \text{covariate, explanatory variable, independent variable} & \text{feature} \\\hline \text{model} & \text{network} \\\hline \text{parameter, coefficient} & \text{weight} \\\hline \text{fitting} & \text{learning} \\\hline \text{refression, classification} & \text{supervised learning} \\\hline \text{density estimation, cluster} & \text{unsupervised learning} \\\hline \end{array}\) ...

November 7, 2022 · 1 分鐘 · Rain Hu
Oh! You closed up the window, so you cannot see raining

[ML] introduction

什麼是 AI & ML & DL 人工智慧是我們想要達成的目標,而機器學習是想要達成目標的手段,希望機器通過學習的方式,變得跟人一樣聰明。 而深度學習就是機器學習的其中一種方法。 人工智慧(Aritificial Intelligence, AI) → 目標 機器學習(Machine Learning, ML) → 手段 深度學習(Deep Learning, DL) … 在機器學習出現之前 生物的行為取決於兩件事,一個是後天學習的結果,一個是天生的本能。 Hand-crafted rules: 人類為機器設定好的天生本能 僵化,無法超越創造者 需要大量人力,不適合小企業 機器學習 寫程式讓機器可以學習 → 尋找關聯資料的函式 舉例:語音辨識、影像辨識、Alpha Go、對話機器人 框架(Framework) 設定一定量的函數 餵入數據 評估函數的好壞 找出最好的函數 \(\begin{array}{rc} \text{step1}&\boxed{\text{Define a set of function}}\\ &\downarrow\\ \text{step2}&\boxed{\text{Evaluate goodness of function}}\\ &\downarrow\\ \text{step3}&\boxed{\text{Pick the best function}}\end{array}\) 告訴機器 input 和正確的 output 這就叫作 supervised learning。 機器學習相關的技術 任務(Task) 迴歸(Regression) Regression 指的是函數的輸出為 scalar(數值),如 PM2.5。 分類(Classification) Classification 指的是函數的輸出為 東西的類別。 當分類為 Yes or No,則為 Binary Classificatino,如垃圾郵件。 當分類是多個選項的,則為 Multi-Classification,如新聞分類。 結構性學習(Structured Learning) 讓機器的輸出具有結構性。 如語音辨識,聲音訊號為輸入,句子為輸出。 如影像辨識,圖片是輸入,人名是輸出。 方法(Method) 選不同的 function set 就是選不同的 model。 ...

June 19, 2022 · 1 分鐘 · Rain Hu